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LIST OF ABBREVIATIONS: 

Ag: silver 

Al: aluminum 

AN: atomic number 

AR: atomic radius 

Ba: barium 

Ca: calcium 

Cd: cadmium 

Co: cobalt 

Cr: chromium 

Cs: cesium 

CO3: carbonate 

CTD: Comparative Toxicogenomics 

Database 

Cu: copper 

CVD: cardiovascular disease 

Fe: iron 

Hg: mercury 

IQR: interquartile range 

k: number of connections between 

chemicals, genes, and diseases 

K: potassium 

KOH: first hydrolysis constant 

L2: root mean square error 

Li: lithium 

LTS: least trimmed squares 

M: maximum likelihood robust estimation 

Mg: magnesium 

MM: high breakdown and high efficiency 

robust estimation 

Mn: manganese 

MP: melting point 

Na: sodium 

Ng: number of genes 

Ni: nickel 

QICAR: quantitative ion character activity 

relationship 

Pb: lead 

pKsp: solubility product 

PM: particulate matter 

Pt: platinum 

r: Pauling ionic radius 

R
2
: coefficient of determination 

ROS: reactive oxygen species 

S: robust scale estimation 

SO4: sulfate 

V: vanadium 

VO3: vanadate 

Xm: electronegativity 

Z: ion charge 

Zn: zinc 

ΔE
0
: change in electrochemical potential 

from ion to its first reduced state 

ΔIP: change in ionization potential from ion 

to its first reduced state 

ρ: density 

σp: Pearson softness coefficient 
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Abstract 

Background: This paper presents a novel exploratory application of quantitative ion character 

activity relationships (QICAR) to estimate associations of human cardiovascular (CV) diseases 

(CVDs) with a set of metal ion properties commonly observed in ambient air pollutants. QICAR 

has previously been used to predict ecotoxicity of inorganic metal ions based on ion properties. 

Objectives: The objective of this work was to examine potential associations of biological 

endpoints with a set of physical and chemical properties describing inorganic metal ions present 

in exposures using QICAR. 

Methods: Chemical and physical properties of seventeen metal ions were obtained from peer­

reviewed publications. Associations of cardiac arrhythmia, myocardial ischemia, myocardial 

infarction, stroke, and thrombosis with exposures to metal ions (measured as inference scores) 

were obtained from the Comparative Toxicogenomics Database (CTD). Robust regressions were 

applied to estimate the associations of CVDs with ion properties. 

Results: CVD was statistically significantly associated (Bonferroni­adjusted significance level 

of 0.003) with many ion properties reflecting ion size, solubility, oxidation potential, and 

abilities to form covalent and ionic bonds. The properties are relevant for reactive oxygen 

species (ROS) generation, which has been identified as a possible mechanism leading to CVDs. 

Conclusion: QICAR has the potential to complement existing epidemiologic methods for 

estimating associations between CVDs and air pollutant exposures by providing clues about the 

underlying mechanisms that may explain these associations. 
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Introduction 

Cardiovascular (CV) system changes may occur if particulate matter (PM) exposure initiates 

pulmonary oxidative stress and inflammation and/or pulmonary reflex responses. These 

responses can lead to adverse outcomes, such as stroke, myocardial ischemia, and myocardial 

infarction (Brook et al. 2004; Brook et al. 2010; Chuang et al. 2007; Mills et al.,2007; U.S. EPA 

2009; Zhang et al. 2009), illustrated by the potential pathways for PM to affect the CV system 

(Figure 1). Oxidative stress occurs when the burden of reactive oxygen species (ROS, 

containing oxygen radicals and non­radical derivatives of O2) at a target site is larger than the 

target site’s antioxidant reserve (Halliwell and Gutteridge 2007). Oxidative stress can lead to 

altered cell signaling, DNA injury, or apoptosis (U.S. EPA 2009). In PM experimental exposure 

studies of in vitro macrophage cytotoxicity (Becker et al. 2002; Hatch et al. 1985) and in vivo 

intratracheal instillation in mice, oxidative stress was associated more strongly with PM 

components, such as metal ions, than with PM mass. Oxidative stress induced by exposure to 

metal ions can occur directly or indirectly (Ercal et al. 2001). When occurring directly, redox­

active metal ions in PM, such as iron (Fe) and copper (Cu), have been shown to cause ROS 

formation through experimental in vitro testing of normal human bronchial epithelial and 

alveolar macrophage cells (Becker et al. 2005), an electron paramagnetic resonance assay 

(Boogaard et al. 2012), and a dithiothreitol assay (Cho et al. 2005) to replicate oxidation in the 

lung. Oxidation­reduction (redox)­active metal ions in PM participate in the Fenton reaction to 

produce the hydroxyl radical (OH⋅), which is subsequently involved in ROS production (Cho et 

al. 2005; Shafer et al. 2010). Redox­inactive metal ions, such as cadmium (Cd) and lead (Pb), 

can reduce antioxidant levels in cells by forming complexes with antioxidants; this condition 

leaves the cell vulnerable to oxidation, as described in a review (Ercal et al. 2001) and observed 
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through imaging experiments employing hydrogen peroxide­specific and redox­specific 

fluorophores (Cheng et al. 2010). PM components, including metal ions, have been shown to 

move into the circulation in animal models (Nemmar et al. 2001; Oberdörster et al. 2002) and 

controlled human exposure studies (Nemmar et al. 2002), but it is unclear whether they remain 

free or become sequestered (Brook et al. 2004). The location of oxidative stress within the body 

can also be affected by other ion properties, such as solubility in lipids or epithelial lining fluid 

and electron exchange properties of metal ions, for both redox­active and redox­inactive metal 

ions (Miyata et al. 2011). A rat inhalation study suggested that exposure to metal ions in PM may 

cause oxidative stress in the lung, leading to production and release of proinflammatory 

cytokines and endothelin­1 into the circulatory system (Thomson et al. 2005). These mediators 

could then travel to distal sites such as the heart and vasculature, where they may mediate 

downstream inflammatory effects (Brook et al. 2010). Alternatively, an epidemiology panel 

study of greater Boston­area coronary artery disease patients exhibiting ST segment depression 

suggested that exposure to both gaseous and particulate air pollutants may lead to activation of 

pulmonary reflexes and local inflammation, subsequent alteration of the autonomic nervous 

system, and resulting heart rate variability changes (Chuang et al. 2008). Markers of 

inflammation and autonomic imbalance have also been associated with exposure to gaseous and 

particulate air pollutants in an epidemiology panel of healthy young adults in Taipei, China 

(Chuang et al. 2007). We hypothesize that relevant physical and chemical properties of metal 

ions can be used to predict adverse CV outcomes initiated by oxidative stress. 

Quantitative ion character activity relationships (QICARs) can be used to examine associations 

between biological endpoints and a set of physical and chemical properties describing inorganic 

metal ions present in exposures. QICARs have been used to predict ecotoxicity of inorganic 
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metal ions based on a set of physical and chemical properties (e.g., McCloskey et al. 1996; 

Newman et al. 1998; Ownby and Newman 2003; Walker et al. 2003). For example, the lethal or 

effective concentrations for 50% of species were predicted by the physical and chemical 

properties of metal ions, such as softness (σp) and log of the first hydrolysis constant (|log(KOH)|) 

(Mendes et al. 2010; Ownby and Newman 2003; Williams et al. 1982). QICAR is a powerful 

tool to evaluate chemical toxicity, because it allows for examination across compounds to 

determine which properties are more strongly associated with adverse responses. In turn, 

analysis of these properties may provide key insights into the biological mechanisms and 

pathways or target receptor(s) affected by metal ions. As mentioned above, health endpoints for 

humans (e.g. CV disease (CVD)) could also be linked with physical and chemical properties of 

chemicals to which people are exposed. However, to our knowledge, QICAR has not been 

applied in any human health studies. 

The goal of this exploratory effort is to determine whether QICAR can be employed to study 

associations of adverse CVDs with human exposure to inorganic metal ions. QICAR appears to 

be a useful tool for elucidating important physical and chemical properties among redox­active 

and redox­inactive metal ions that may have adverse effects on CVD. We present a study in 

which QICAR is applied to human health in the context of air pollution. 

Methods 

Data sources 

Chemical and physical property data were obtained from common physical chemistry reference 

handbooks for seventeen metal ions commonly observed in the atmosphere: lithium [Li(I)], 

sodium [Na(I)], potassium [K(I)], cesium [Cs(I)], magnesium [Mg(II)], calcium [Ca(II)], barium 
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[Ba(II)], manganese [Mn(II)], iron [Fe(II)], cobalt [Co(II)], nickel [Ni(II)], silver [Ag(I)], copper 

[Cu(II)], zinc [Zn(II)], cadmium [Cd(II)], mercury [Hg(II)], and lead [Pb(II)] (James and Lord 

1992; Kaye and Laby 1993). These physicochemical property data have been applied in several 

published peer­reviewed QICAR studies (McCloskey et al. 1996; Mendes et al. 2010; Newman 

et al. 1998; Ownby and Newman 2003; Walker et al. 2003; Williams et al. 1982). Several of 

these metal ions (Pb, Hg, Mn, Ni) are well­known toxicants (Dreher et al. 1997; Ercal et al. 

2001; Lippmann et al. 2005; Moriwaki et al. 2008). Properties included in this QICAR 

examination (Table 1) are related to exchange of electrons and solubility of metal ions and, 

therefore, may be associated with ROS generation (Mendes et al. 2010; Walker et al. 2003). 

These properties include fundamental attributes of metal ions (e.g. ion mass, ion length scale), 

solubility, softness, tendency of an ion to be oxidized, energy required for oxidation, oxidation 

state, oxidation energy, ability to produce OH 
­

ions, and abilities to form covalent and ionic 

bonds. A table of the value of each property for each metal ion is provided (see Supplemental 

Material, Table S1). In addition to evaluating associations with properties of the individual 

metal ions, we evaluated associations according to two groups of metal ions. The s­block group 

comprised Li, Na, K, Cs, Mg, Ca, and Ba, which are from the s­block of the periodic table. The 

transition group included the transition metal ions Mn, Fe, Co, Ni, Ag, Cu, Zn, and Hg from the 

d­block of the periodic table, which can have multiple oxidation states. Although Pb is from the 

p­block of the periodic table, it was included with the transition metal ions for this analysis 

because it also has multiple oxidation states. 

Associations of CVDs with metal ion exposures examined in this analysis came from the 

publicly available Comparative Toxicogenomics Database (CTD) (Davis et al. 2009; Davis et al. 

2011). The CTD is a curated database of known interactions between chemicals and genes, genes 
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and diseases, and infrequently, chemicals and diseases. Chemical­disease relationships are 

inferred in CTD using established evidence of either chemical­gene and gene­disease 

interactions or chemical­disease interactions observed in curated laboratory studies within the 

CTD database. Chemical­gene or chemical­disease interactions curated in the CTD can include 

any study that demonstrates a chemical exposure can lead to a change in gene or disease status 

through any exposure pathway (Davis et al. 2009; Davis et al. 2011). The CTD database focuses 

on environmental chemicals and outcomes relevant to human health, but inferences may be 

based in part on information from animal studies if the animal contains a gene that is also present 

in humans and the study elucidates the effect of a chemical on the gene or a gene on a disease 

outcome. 

Within the CTD, inference score is a measure of the degree of support for a given association 

between a disease and a chemical. An inference score is computed using principles of scale­free 

networks, where the probability that a vertex in a large network interacts with another vertex 

decays according to a power law (Barabasi and Albert 1999). A vertex in the CTD can be a gene 

(G), chemical (C), or disease (D) with some number of connections (k) between them. For a set 

of Ng genes, the inference score (Y) is computed as (Li and Liang 2009): 

Y = ­ln[P(G associated with both C and D|k, Ng)P(no other G connects C and D|k, Ng)] [1] 

Each inference score used in this analysis is the log transform of the product of two probability 

functions: 1) the probability that a gene is associated with both a chemical and a disease and 2) 

the probability that the chemical­gene­disease connection is unique. The CTD curates data for 

chemical­disease and gene­disease interactions for twenty­seven disease categories, including 

CVDs. Within the CVD category, five endpoints were selected for this study based on the 
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potential relevance of oxidative stress mechanisms to their development: cardiac arrhythmia, 

myocardial ischemia, myocardial infarction, stroke, and thrombosis (Godleski et al. 2000; 

Longhurst et al. 2001; U.S. EPA 2009). Inference score data for each CVD endpoint­metal ion 

pair is provided (see Supplemental Material, Table S2). Arrhythmia inference scores were 

available for 6 of 7 s­block metal ions and 7 of 10 transition metal ions, myocardial infarction 

inference scores were available for 5 s­block metal ions and 8 transition metal ions, myocardial 

ischemia inference scores were available for 5 s­block metal ions and 9 transition metal ions, and 

thrombosis and stroke inference scores were available for 5 s­block metal ions and 10 transition 

metal ions. 

Statistical Analysis 

All statistical analyses were conducted with the Statistical Analysis System (SAS version 9.1, 

SAS Inc, Cary, NC). For each CVD endpoint, least­trimmed squares (LTS) regression was used 

to estimate associations of log­transformed inference scores for a set of metal ions (s­block or 

transition) with their ion properties. LTS regression minimizes the influence of outliers on the 

model fit (Rousseeuw and Leroy 2003; Rousseeuw and Hubert 2011). Rather than minimize the 

sum of squared residuals for all data points included in ordinary least squares regression, LTS 

minimizes the sum of squared residuals for a subset of data points that minimizes the sum of 

squared residuals to remove the influence of outliers from the regression. Trimmed data points 

are those excluded from the minimized sum of squared residuals function; and the number of 

trimmed data points (Ntrim) is determined separately for each outcome and metal ion group 

model. The default approach provided by SAS (PROC ROBUSTREG) was employed to 

calculate LTS breakdown values to determine Ntrim. Breakdown values estimate the smallest 
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proportion of data that, if erroneous, could bias the estimator. Breakdown values for the 

simulations ranged from 8­20%. 

The overall significance level was 0.05. Given that 16 properties were tested, the multiple 

comparisons design led to a Bonferroni­corrected significance level of 0.003 (or 0.05/16). Log 

transformation of the inference scores was applied to reduce skewness of the original data and 

more closely meet the statistical modeling assumptions. 

Given collinearity between several ion properties, only one ion property was used in a univariate 

regression each time as a predictor (see Table 2). Scatter plots were developed during 

exploratory analysis to visualize the data (an example for AN is in Figure 2). Examination of 

these scatter plots revealed that the properties tended to cluster around the type of metal ion (i.e., 

s­block or transition) with potentially different slopes for each group. For this reason, LTS 

regressions for each disease­property combination were performed separately for s­block and 

transition metal ions. Slopes obtained from the LTS regressions are presented both as one­unit 

changes in properties and as standardized by the interquartile range (IQR) of the property 

distribution. 

To evaluate if the results were sensitive to specific regression methods, additional regression 

approaches were also used to examine robustness of the LTS results. Other regression 

approaches included in the analysis were maximum likelihood type robust (M) estimation (Huber 

1973), minimization of robust scale (S) estimation (Rousseeuw and Yohai 1984), and high 

breakdown/high efficiency robust (MM) estimation (Yohai 1987). For M estimation, a bi­square 

weight function was applied. For MM and S estimations, SAS default parameters in PROC 

ROBUSTREG for the MM and S options, respectively, were employed. 
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Because the dataset had small sample sizes (i.e., limited to the number of metal ions included in 

each group evaluated), robustness of the LTS results was further evaluated via Monte Carlo 

simulation. The log­transformed inference scores, Yij, were sampled once from the corresponding 

normal distribution with a mean of β0,ikl+β1,iklxjk and a standard deviation of σikl for the i
th 

disease, 

th th th 
j metal ion, k metal ion property, and l group (s­block vs. transition metal ions). β0 and β1 are 

the regression coefficients (treated as fixed values in the simulation) between log­transformed 

inference scores and metal ion properties, x is the metal ion property (treated as a fixed value in 

the simulation), and σ is the standard deviation of the regression residuals. The sampled Yij were 

regressed on xjk with the LTS approach for each combination of health endpoints, metal ion 

properties, and metal ion groups. The number of outliers [defined as Yij = (β0,ikl+β1,iklxjk)±3σikl ] 

included in each simulated dataset was identical to or greater than the number of outliers 

identified by LTS in the original dataset. The procedure was repeated 1000 times. Centrality and 

variability of the regression coefficients based on the original datasets were compared with the 

simulation results. 

Model Validation 

Validation of selected models was performed where data were available in the CTD and 

properties databases. Because there are more transition metal ions than s­block metal ions, four 

cardiac arrhythmia models were chosen for validation: AN, σp, MP, and ρ (Dean 1999; James 

and Lord 1992; Kaye and Laby 1993; Lide 1996). Relative L2 error norms were computed to 

compare ln(Inference Score) predictions from the regression models input with property data for 

aluminum [Al(III)], chromium [Cr(VI)], and vanadium [V(V)]. In other words, the relative L2 

error norm approaches zero as the predicted ln(Inference Score) approaches that from the CTD. 

Relative L2 error norm is computed as: 

12
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/∑[in(	 Inference 	Score)-prediction FL2 _    [2]  
/∑in(	 Inference 	Score)F 

Results and Discussion 

All associations between inference scores and ion properties (robust univariate regressions) are 

summarized (see Supplemental Material, Tables S3–S7). A set of example scatter plots with LTS 

regression lines is provided for the AN property in Figure 2. Table 3 presents significant LTS 

regression results, with p­values of the slopes < 0.003. The tables also provide data for the 

number of metal ions included and trimmed from the robust model, standard error, significance 

level, and coefficient of determination (R
2
). Table 4 displays a matrix illustrating statistically 

significant associations between inference scores and properties for each metal ion grouping (s­

block or transition metal ions). 

Evaluation of the LTS regression results through comparison with other robust estimation 

methods and Monte Carlo simulations to address small sample size lend confidence to the 

results. LTS regression produced slopes that were often comparable to those associated with the 

other robust estimation approaches (see Supplemental Material, Tables S8–S12) with equivalent 

slopes produced by the four methods for 50% of the simulations and slopes within 20% of each 

other for 63% of the simulations. The Monte Carlo simulation results also confirmed the 

robustness of slopes (see Supplemental Material, Tables S13–S17) by predicting the model 

slopes within ±3%, although the standard error of the LTS results tended to underestimate the 

standard error computed during the Monte Carlo simulations. The LTS approach is very robust 

to outliers (Nevitt and Tam 1998; You 1999). 
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The validation exercise produced L2 error norms, i.e., the relative difference between the 

predicted inference score and the CTD inference score, for AN, σp, MP, and ρ of 29%, 14%, 

25%, and 41%, respectively. These L2 error norms are high, but given that data from only three 

metals were used to validate the models, they suggest a reasonable fit. 

Associations between health outcomes and properties varied among the diseases and metal ion 

groupings. Cardiac arrhythmia was not associated with any properties for the s­block elements 

(Tables 3 and 4). For the transition elements, cardiac arrhythmia was associated with ion mass 

and length scale (AN and ρ), softness (σp), solubility (MP), and ability to form covalent bonds 

(Xm
2
r). Myocardial ischemia was associated with six properties for the s­block metal ion models 

and none for the transition metal ion models. For the s­block metal ions, associations were 

observed for ion size (AN, AR, r), oxidation energy (AN/ΔIP), and ability to form covalent 

bonds (Xm, Xm
2
r). Myocardial infarction was associated with two properties for the s­block 

element models and none for the transition metal ion models: ion mass (AN) and oxidation 

energy (AN/ΔIP). Thrombosis was associated with two properties for the s­block metal ions, ion 

mass and length scale (ρ) and softness (σp), and three properties for the transition metal ions, ion 

length scale (AR), ability to form ionic bonds (Z/AR), and softness (σp). Thrombosis was the 

only endpoint for which both the s­block and transition metal ions had significant models. Stroke 

was associated with five properties for the s­block metal ion models and none for the transition 

metal ion models. For the s­block metal ions, associations were observed for ion mass (AN), 

solubility (MP), softness (σp), ability to form covalent bonds (Xm
2
r), and ability to form ionic 

bonds (Z). 

Similarities and differences among the regression models are apparent for the health endpoints. 

For example, the slopes, based on unit and interquartile range (IQR) changes, were similar in 

14
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magnitude and sign for myocardial ischemia and myocardial infarction for AN, AN/ΔIP, 

log(KOH), and ρ (see Supplemental Material, Tables S4 and S5, respectively). For example, the 

s­block model unit slopes for AN were 0.0504 and 0.0584 for myocardial infarction and 

myocardial ischemia, respectively. These observations, along with the finding that associations 

of myocardial ischemia and myocardial infarction were observed primarily for s­block elements 

(Table 3), suggest a common mechanistic pathway for both outcomes among the metal ions 

examined. Myocardial infarction is a severe potential consequence of myocardial ischemia, to 

which altered vasoreactivity, atherosclerotic plaque formation, and thrombosis may contribute 

(Figure 1). Estimated slopes for associations between cardiac arrhythmia and metal ion 

properties tended to differ from estimated slopes for other outcomes. For example, slopes for 

AN, AN/ΔIP, and ρ varied in magnitude between cardiac arrhythmia and myocardial ischemia 

(see Supplemental Material, Tables S3 and S5, respectively). The s­block model unit slope for 

AN was an order of magnitude lower for cardiac arrhythmia (0.00583) compared with 

myocardial infarction (0.0504) and myocardial ischemia (0.0584). It is possible that these 

observed differences reflect the role of autonomic nervous system imbalance in development of 

cardiac arrhythmia (see also Campese et al. 2004; Creason et al. 2001; Gold et al. 2000; He et al. 

2010; He et al. 2011; Liao et al. 1999, 2004; Pope et al. 1999). Differences were observed 

between the statistically significant property­based models for thrombosis and stroke. It is 

possible that differences among the stroke and thrombosis models may relate to etiologic 

differences between strokes of hemorrhagic, rather than thromboembolic, origin. Previous 

epidemiology studies have reported associations between PM, NO2, CO, and O3 with ischemic 

(i.e., thromboembolic) but not hemorrhagic stroke (Hong et al. 2002; Wellenius et al. 2005). 
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However, the models for softness (σp) were statistically significant for stroke with s­block metal 

ions and for thrombosis with both s­block and transition metal ions. 

Associations between CVD and transition metal ion exposure have been found in toxicological 

and epidemiologic studies. Farraj et al. (2011) exposed rats to a PM designed to mimic metal 

ion­containing residual oil fly ash by composing the PM of a mix of NiSO4, Fe2SO4, and NaVO3 

and observed cardiac arrhythmias with concurrent autonomic changes, with the magnitude of 

autonomic change corresponding to low, medium, or high exposure group and no effect for the 

no exposure group. Given that Farraj et al. (2011) studied only transition metal ions, this is 

somewhat consistent with the findings that the transition metal ion properties were significantly 

associated with cardiac arrhythmia. However, Farraj et al. (2011) did not look at associations 

between cardiac arrhythmia and individual metal ion compounds, so it is not possible to discern 

whether relative differences among the properties had differential effects on arrhythmogenesis. 

An epidemiologic study of hospital admissions for CVD among older adults (> 64 y) in Atlanta, 

GA by Suh et al. (2011) reported significant associations between myocardial ischemia and 

transition metals in PM exposure but did not study cardiac arrhythmias. However, our results 

indicate that for the transition metal ions, myocardial ischemia is not statistically significantly 

associated with any other properties examined. Hence, the results do not provide strong support 

for or negation of Suh et al.’s (2011) observations. Based on the results of the QICAR models, 

none of the CV health outcomes were associated with ionic exchange of electrons for transition 

metal ions, in contrast with with s­block metal ions, which were associated with myocardial 

ischemia and myocardial infarction. However, all five adverse CV health outcomes were 

associated with ion size for both transition and s­block metal ions. Ion size or mass may reflect 

greater reactivity, possibly resulting from stronger interatomic forces associated with complexes 
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involving large ions (Walker 2007). Softness (σp) was found to be a statistically significant 

predictor of cardiac arrhythmia for transition metal ions (Table 3). Mendes et al. (2010) 

concluded that σp caused covalent bonding of the metal ions to biological ligands in a study of 

fungi toxicity. σp also provided the most statistically significant association with adverse species 

outcomes in several other ecotoxicology studies (McCloskey et al. 1996; Ownby and Newman 

2003; Zhou et al. 2011). 

There are several limitations of this work. First, the sample sizes were small because the number 

of s­block and transition metal ions is small in general, and only a subset is available in the CTD. 

Small sample size also limits the model validation, given that data from only three metal ions 

were available for validation. However, our analysis was intended to explore development of 

models potentially associating adverse CV endpoints and chemical and physical properties, 

rather than to establish definitive conclusions about these relationships. Furthermore, Monte 

Carlo simulations yielded slope estimates within ±3%, which added confidence to the results. 

Second, the properties evaluated were moderately to highly correlated (Table 2), thus limiting 

the linear regression analyses to univariate regressions. More sophisticated multivariate 

approaches not constrained by collinearity (e.g. Partial Least Square Regressions) will be tested 

to examine further the associations between disease outcomes and ion properties. Third, the CTD 

is likely subject to selection bias because the inference scores reflect both data availability and 

inference of association between each chemical­disease pair in question. Moreover, given that 

the CTD inferred associations between disease outcomes and chemical exposures, the CTD may 

not have been limited to inhalation exposures, which is the primary exposure pathway for air 

pollutants. However, the inference score calculated within the CTD was attractive to use as a 

health outcome metric because it incorporates probabilities of association in a consistent manner 
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across health outcomes and outcome­property pairs. These limitations will be addressed as the 

methodology of applying QICAR to human health outcomes is refined. 

Conclusions 

In this exploratory, hypothesis­generating work, QICAR was used to link human CVD and the 

properties of metal ions commonly observed in ambient PM. Cardiac arrhythmia, myocardial 

infarction, myocardial ischemia, stroke, and thrombosis were associated with some ion properties 

related to ROS generation. This work supports the feasibility of using ion properties to predict 

CVD. QICAR has the potential to complement existing epidemiologic methods for estimating 

associations between CVDs and air pollutant exposures by providing clues about the underlying 

mechanisms that may explain these associations. More sophisticated approaches will be applied 

to extend work to study the associations between diseases and properties of organic and 

inorganic chemicals. 
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Table 1. The ROS­generation related properties of metal ions used in the analysis.



Abbreviation Description Property Affecting ROS 

Generation
a 

AN Atomic number Ion mass 

AR Atomic radius Ion length scale 

r Pauling ionic radius Ion length scale 

ρ Density Ion mass and length scale 

ΔE
0 

Change in electrochemical potential from Tendency of an ion to be oxidized 

ion to its first reduced state 

ΔIP Change in ionization potential from ion Energy required for oxidation 

to its first reduced state 

Z Ion charge Oxidation state 

AN/ΔIP Atomic number: Ionization potential Oxidation energy 

ratio 

log[KOH] Logarithm of the first hydrolysis constant The ability to produce OH 
­
ions 

MP Melting point Solubility 

pKsp(CO3) Solubility product of MCO3, where M = Solubility 

metal 

σp Pearson softness coefficient Softness 

Xm Electronegativity Ability to form covalent bonds 

Xm 
2 
r Covalent index Ability to form covalent bonds 

Z/AR Ionic charge: Atomic radius ratio Ability to form ionic bonds 

Z
2
/r Cation polarizing power Ability to form ionic bonds 

a
Mendes et al. (2010); Newman and McCloskey (1996); Walker et al. (2003); Wolterbeek and Verberg 

(2001) 
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Table 2. Spearman correlation coefficients among the physical and chemical properties 

across the metal ions included in the QICAR models. 

Z AN r AR ΔIP ΔE0 Xm log(KOH) σp Xm 
2 r Z2/r AN/ΔIP Z/AR MP ρ pKsp(CO3) 

Z 1.0 0.24 ­0.47 ­0.49 0.50 ­0.50 0.48 ­0.57 ­0.54 0.26 0.88 ­0.04 0.86 0.49 0.46 ­0.45 

AN 1.0 0.48 0.13 ­0.03 ­0.32 0.43 ­0.36 ­0.50 0.71 ­0.07 0.85 0.15 ­0.25 0.62 ­0.58 

r 1.0 0.89 ­0.71 0.50 ­0.47 0.52 0.35 ­0.04 ­0.75 0.82 ­0.69 ­0.55 ­0.27 ­0.09 
AR 1.0 ­0.75 0.80 ­0.78 0.67 0.65 ­0.44 ­0.71 0.58 ­0.81 ­0.55 ­0.65 0.23 

ΔIP 1.0 ­0.77 0.71 ­0.83 ­0.74 0.34 0.77 ­0.42 0.73 0.67 0.60 ­0.33 

ΔE0 1.0 ­0.95 0.74 0.85 ­0.74 ­0.61 0.14 ­0.80 ­0.48 ­0.90 0.66 
Xm 1.0 ­0.78 ­0.85 0.87 0.55 ­0.07 0.76 0.39 0.94 ­0.63 

log(KOH) 1.0 0.80 ­0.56 ­0.67 0.10 ­0.74 ­0.32 ­0.76 0.46 

σp 1.0 ­0.71 ­0.54 ­0.06 ­0.66 ­0.35 ­0.91 0.73 
Xm 

2 r 1.0 0.16 0.30 0.47 0.06 0.86 ­0.65 

Z2/r 1.0 ­0.39 0.92 0.66 0.44 ­0.31 

AN/ΔIP 1.0 ­0.26 ­0.42 0.16 ­0.26 
Z/AR 1.0 0.59 0.67 ­0.53 

MP 1.0 0.30 ­0.34 

ρ 1.0 ­0.74 
pKsp(CO3) 1.0 
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Table 3. The associations between the inference score relating CVD to metal exposures 

with the physical and chemical properties of metal ions using robust univariate regressions. 

Results reported are for the models with significant slopes (P­values < 0.003). Properties are 

listed in descending order of R
2 

within each disease and metal ion group. 

Disease Group Property Na Ntrim 
b Slope Standardized SE P­value R2 

Slopec 

Cardiac transition Xm 
2 r 6 1 0.177 0.112 0.0506 <0.001 0.48 

Arrhythmia 

AN 6 1 5.86x10 ­3 2.79x10 ­4 8.95x10 ­4 <0.001 0.84 

σp 6 1 ­5.54 11.1 1.76 0.002 0.7 

ρ 6 1 6.27x10 ­5 3.09x10 ­8 1.53x10 ­5 <0.001 0.59 

MP 6 1 ­1.81x10 ­4 ­1.72x10 ­7 4.84x10 ­5 <0.001 0.57 

Myocardial s­block AN/ΔIP 4 1 0.235 0.0375 0.054 <0.001 0.9 

Infarction 

AN 4 1 0.0504 1.62x10 ­3 0.0147 0.001 0.85 

Myocardial s­block Xm 
2 r 4 1 ­2.6 ­17.3 0.262 <0.001 0.98 

Ischemia 

AN/ΔIP 4 1 0.276 0.0441 0.0416 <0.001 0.94 

r 4 1 3.3 8.24 0.514 <0.001 0.92 

AR 4 1 2.59 6.46 0.519 <0.001 0.87 

AN 4 1 0.0584 1.89x10 ­3 0.0151 <0.001 0.84 

Xm 4 1 ­1.82 ­18.2 0.567 0.001 0.84 

Stroke s­block AN 4 1 0.0381 0.00123 0.00735 <0.001 0.73 

MP 4 1 0.000373 5.74x10 ­7 0.000114 0.00109 0.84 

σp 4 1 ­9.63 ­241 1.33 <0.001 0.83 

Xm 
2 r 4 1 2.53 16.9 0.0828 <0.001 0.99 

Z 4 1 0.260 0.260 0.0663 <0.001 0.88 

Thrombosis s­block ρ 4 1 0.00136 1.20 0.000156 <0.001 0.84 

σp 4 1 ­19.7 ­492 3.71 <0.001 0.60 

transition AR 8 2 2.21 11.0 0.544 <0.001 0.66 

σp 7 2 ­10.2 ­204 3.01 <0.001 0.68 

Z/AR 8 2 ­2.60 ­11.3 0.572 <0.001 0.65 

a
number of metals included in model; 

b
number of metals trimmed from the robust model based on total 

number for which data were available; 
c
standardized per interquartile range increase in property; SE: 

standard error. See Supplemental Material, Tables S3­S7, for complete results. 
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Table 4. The statistically significant associations (p<0.003) between the CTD inference 

score relating CVD to metal exposures, and the physical and chemical properties of metal 

ions, by the groups of metal ions (s­block, and transition metal ions). 

Property Cardiac Myocardial Myocardial Stroke Thrombosis 

Arrhythmia Infarction Ischemia 

AN transition
a 

s­block s­block s­block ­

AR ­ ­ s­block ­ transition 

ρ transition ­ ­ ­ s­block 

MP transition ­ ­ s­block ­

r ­ ­ s­block ­ ­

σp transition ­ ­ s­block s­block, 

transition 

Xm ­ ­ s­block ­ ­

AN/ΔIP ­ s­block s­block ­ ­

Xm 
2 
r transition ­ s­block s­block ­

Z ­ ­ ­ s­block ­

Z/AR ­ ­ ­ ­ transition 

a
Significant associations (P­value < 0.003 for slopes and R

2
>0.5 in the robust univariate regression) 

between cardiac arrhythmia and AN for transition metal ions; A “­“ symbol indicates no statistically 

significant relationship between the health outcome and property. 
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Figure Legends 

Figure 1. Potential pathways for effects of PM exposure on the cardiovascular system (Sources: 

U.S. EPA, 2009; Brook et al., 2010). The five endpoints examined here, arrhythmia, myocardial 

ischemia, myocardial infarction, thrombosis, and stroke, are shown on the diagram in black. 

Question marks denote areas of the potential mechanisms of action that are less certain. 

Figure 2. Scatter plots of log(Inference Score) vs. AN for each CV endpoint. The solid lines 

represent LTS robust regressions for the s­block metal ions, and the dashed lines represent LTS 

robust regressions for the transition metal ions. All data points (trimmed and non­trimmed) are 

shown in the figure with the robust regression lines. 
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